If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t+4.9t^2-800=0
a = 4.9; b = 5; c = -800;
Δ = b2-4ac
Δ = 52-4·4.9·(-800)
Δ = 15705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15705}=\sqrt{1*15705}=\sqrt{1}*\sqrt{15705}=1\sqrt{15705}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1\sqrt{15705}}{2*4.9}=\frac{-5-1\sqrt{15705}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1\sqrt{15705}}{2*4.9}=\frac{-5+1\sqrt{15705}}{9.8} $
| 10-3x+37=27 | | 16x-28=6-x | | 16x-28=6-x | | 1-x+37=36 | | 6/5x−3/2=7/10(x−3/4) | | 82x+10=10-82x | | 2-2x+37=35 | | 22x+3=22x-3 | | 8x+2x-8=6 | | 23=2e+5 | | -9x+14=12x | | -5(y-1)=-7y+3 | | 3/7c=9 | | 2-1x+37=35 | | 5y-25=2(y-8) | | 3/4+b=5/6 | | 16b/72=72/16b | | y/6+y/2=9/8 | | 3y-15/4=7 | | 2(3x+4=50 | | -4(y-2)=-8y-4 | | 0-3x+37=37 | | -5y+3{y-8}=-32 | | Y^3+7y^2-18y=0 | | 3(2x×3)-7(x+2)=0 | | 4n^2+6n-58=12 | | 3u-30=-3(u-6) | | 4x+6=-102-7x | | 6=1-2n=+5 | | 8y+1=6y+8 | | -x-11=7 | | 36-2x=13-7x |